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The technical constants of some cubic 
and non-cubic materials 
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The elastic constants (technical constants) for some polycrystalline materials of cubic and 
non-cubic (hexagonal, tetragonal, trigonal and orthorhombic) symmetry have been computed by 
a new averaging scheme involving the squared reciprocal sound velocities. The computed values 
are compared with those from the averaging scheme of Hill. An examination of the data reveals 
that the predictions for the shear modulus and Young's modulus of cubic materials agree with 
those of Hill within 0.01% and 0.5%, respectively, while the new scheme overestimates the values 
of the bulk modulus for cubic materials by 3.8% on average. For the non-cubic materials, the 
predicted values of shear modulus, Young's modulus and bulk modulus are within 2.7%, 0.3% and 
13.5%, respectively, of Hill's values. 

1. Introduction 
The elastic coefficients relating stress and strain for 
polycrystalline materials and single crystals have 
wide-ranging uses in science and engineering. For 
example, they are of fundamental importance in 
characterizing many mechanical, physical, optical, 
piezoelectric and thermal properties. For polycrystal- 
line materials, the elastic coefficients can be specified 
either by Lame's constants or by any two of the 
following parameters: shear modulus, G, Young's 
modulus, E, bulk modulus, B, and Poisson's ratio. 
Standard elasticity procedures are used to relate the 
two chosen parameters. For single crystals, the stiff- 
nesses, C~j, or the compliances, S~j, specify the elastic 
coefficients. In the present context, we refer to elastic 
constants for single crystals and to technical constants 
for polycrystalline materials. 

Recently, a new method was presented [1] for using 
sound velocity measurements to determine the Debye 
temperature. It deals with an evaluation of the Debye 
temperature by direct integration and the adoption of 
the Debye theory of lattice vibration as an averaging 
scheme to predict the Debye temperature from sound 
velocity measurements. The scheme also has the ad- 
vantage of being able to predict the technical con- 
stants. Moreover, it involves the averaging of the 
squared reciprocal velocities on which the technical 
constants actually depend. In contrast, Middya et al. 
[2] and Ledbetter and Naimon [3] used averaging 
schemes that involved the average velocity and cubed 
reciprocal velocity, respectively. Voigt [4] and Reuss 
[5] used classical averaging schemes to calculate G, 
E and B, and Hill I-6] used their geometric average 
values. We have made [-1] a comparison of the results 
of their computational scheme to predict the Debye 
temperature with the results from schemes by Alers 
[7] and Wanner [-8] and with experimental data for 
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cubic and non-cubic materials. It was concluded that 
the advantage Of our computational procedure 
comes from the fast rate of convergence and the ability 
of the code to compute the Debye temperature for all 
crystal symmetries. It was noted that Alers' code is 
only capable of computing the Debye temperature for 
cubic, hexagonal and tetragonal symmetries, while 
Wanners' code is suitable only for cubic symmetries. 

In this paper, we examine the values of the technical 
constants (G, E and B) computed by the new aver- 
aging scheme for some materials of cubic and non- 
cubic (i.e. of hexagonal, tetragonal, trigonal and 
orthorhombic) symmetry. The computed values are 
compared with those from the averaging scheme of 
Hill [6] (geometric mean value of the Voigt and 
Reuss values) and with the experimental data where 
available. 

2. Computational procedures 
The procedures perform the numerical integration of 
the phase velocities over the quadrant bounded by the 
crystallographic directions [1 0 0], [0 1 0] and E0 0 1]. 
By summing up the values of the integrands using the 
well-known Simpson's one-third rule [9] with two 
nested loops, the following equations are evaluated 

(1/v 3) 1/3 = E ~ ( V ~ 3 ( 0 , , )  + v ~ 3 ( 0 , ~ )  

+ Vt~3(0, qJ))sin~)d~dO/4rc]-l/3 

(1) 

(2) 1/P V2 = (P) 1/2S vEZ(0,q)s in~d~d0/4 r~ 

lloV~ = (p) 1/2~[vt12(0,q,)  

+ Vt22( 0, 4)] sin 0 dqJd0/4~z (3) 

where V is the velocity of sound, VL is the quasi- 
longitudinal velocity of sound, Vtl and Vt2 are the 
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quasi-transverse velocities of sound, 9 is the mass 
density, 0 is the polar angle, and ~ is the angle between 
the z-axis (in the Cartesian system) and the propag- 
ating wave. 

The inner loop performs the integration at constant 
4, while the outer loop finishes the integration. After 
this, the average phase velocities are calculated with 
the mean value theorem. The values of G, E and B are 
calculated from 

G = [ ( 1 / 9 V 2 t ) 1 3 / 2  (4) 

E = [ 3 ( 1 / 9 V ~ )  - 1  - 4 G ] / [ { ( 1 / p V 2 ) - I } / G  - 1] 

(5) 

B = ( 1 / o V  2 ) - 1  _ 4 G / 3  (6) 

The input elastic constants are values of Cq taken 
from the data compiled by Simmons and Wang [10], 
Alexandrov and Ryzhova [11], Meissner and co- 
workers [12, 13], and Hearmon [14, 15]. Full details 
of the averaging scheme are given elsewhere [1]. 

3. Results and discussion 
3.1. Technical constants for some cubic 

materials 
To assess how the results of the present averaging 
scheme rate with other methods and how well they 
compare with experiment, the same input stiffnesses 
listed by Middya et  al. [2] and Ledbetter and Naimon 
[3] are used. Table I lists the experimental values 
of shear modulus, G, and the values calculated by 
Middya et  al. [2] Ledbetter and Naimon [3], Hill [6] 
and the present method, and the percentage difference 
between the present method and that of Hill. The 
corresponding information pertinent to Young's 
modulus and the bulk modulus is presented in 
Tables II and III. 

Several major observations can be made from these 
tables. First, the method of Ledbetter and Naimon is 
insufficient to predict the technical constants, even 
though the invariance relation of the bulk modulus is 
preserved. This fact is clearly demonstrated in Table I, 
where the predicted shear moduli deviate substantially 
from the experimental values for most of the materials 
under consideration. The data marked by the letter 
b seem to suggest otherwise. However, the bulk of 
these materials possess significant isotropy. The ex- 
perimental value of 45.l GPa for G for copper, which 
compares well with the calculated value, appears to be 
in definite error, because it differs substantially from 
the other two values listed by Middya et  al. (48.3 and 
47.7 GPa). Further illustration of the shortcoming of 
the method of Ledbetter and Naimon is obtained by 
noting that the calculated value of G for silver deviates 
approximately 3% from the experimental value. The 
deviation of their calculated values from the experi- 
mental ones becomes greater as the degree of aniso- 
tropy increases. For example, the method of Ledbetter 
and Naimon predicts a value of 7.4 GPa for the shear 
modulus of lead, which is approximately 14% lower 
than the experimental value. The underlying assump- 
tion for the averaging method of Ledbetter and 
Naimon is that the average reciprocal cubed velocities 

are equal for single crystals and polycrystals of the 
same materials. That is 

V -3 = (1/3)[(B + 4G/3) -15 + 2 G - l " 5 ] p  15 

(7) 
for polycrystals and 

V -3 = (1/3)(V{ 3 + Vtl 3 + V,2 ~) (8) 

for single crystals. 
Anderson [18] attempted unsuccessfully to use 

Equation 7 in lieu of Equation 8 using values for 
B and G calculated from the arithmetic mean values of 
Voigt and Reuss as suggested by Hill, to compute 
V and, therefore, the Debye temperature. He showed 
that the margin of error between the mean velocity 
values computed from Equations 7 and 8 may be as 
big as 10% and is additive. Clearly then, the assump- 
tion of equal mean reciprocal cubed velocities for 
single crystals and polycrystals of the same materials 
does not hold with respect to experimental or calcu- 
lated values for the technical constants. The reason 
why the two equations are not equivalent may be 
deduced from their origin. Equation 7 assumes the 
existence of one longitudinal mode and two equal 
transverse modes in a solid material made up of ag- 
gregates regarded as grains oriented randomly. By 
contrast, Equation 8 assumes the existence of three 
vibrational modes, one longitudinal and two different 
transverse ones, in a solid crystal regarded as a solid 
continuum. Therefore, the equations are not equi- 
valent because they describe waves propagating in 
two basically different solids. 

Second, neither the current averaging scheme nor 
that of Middya e t  al. is capable of predicting entirely 
satisfactory results for the bulk modulus. This is 
clearly demonstrated in Table III, where it is shown 
that the difference between the calculated and experi- 
mental values for B may differ by more than 10%. 
Generally, the Hill method (in which B is taken to be 
a scalar which is rotationally invariant and may be 
calculated either from the Voigt or Reuss averaging 
schemes) seems to yield results which agree with the 
experimental values far better than those of the 
current method and that of Middya et  al. The occa- 
sional lack of success of the Hill method (i.e. Voigt or 
Reuss) appears to be due to experimental error. The 
bulk modulus is usually determined via C~1 and 
C12 and it is widely understood that the determination 
of C12 is subject to relatively large experimental error, 
because it has to be determined indirectly. This is 
especially true when the elastic moduli are determined 
from the elastic compliances (see Hearmon [14]). 

At first, one might be inclined to suggest that the 
lack of success of the present method in calculating the 
bulk modulus is due to computing the mean value for 
the longitudinal velocity. One might also question the 
validity of the assumptions made in the present aver- 
aging scheme. To explore these thoughts, we rewrite 
the expressions for the longitudinal velocity in terms 
of the technical constants 

pVL 2 = (B + 4G/3) (9) 

9V~ = G[(4G - E)/(3G - E)] (10) 
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T A B L E  I Comparison of the experimental and calculated values for shear modulus, G, for some cubic materials 

Material G (10 :1  P a )  

Experimental Midya et al. Ledbetter Hill Present 
[2 ]  and Naimon [63 

[3] 

Difference g 
(%) 

Cu a 0.477 c 0 .4826 0 .4559 0 . 4 6 t  0 .4659 + t.1 

0.451 a 

0 . 4 5 Y  

C u  b 0.483 ~ 0.483 0 .4557 0 .465  0 A 6 5 7  + 0.2 

A g  b 0 . 2 9 &  0 .3045  0.2858 0 .2847  0.2858 + 0.4 

Ag a 0 . 2 9 t  c 0.291 t 0 .2735 0 .2825  0 .2836  + 0.4 

0 .288  a 

0 .286  r 

A u  a'b 0 .2817  ~ 0 .282  0.2643 0 .2706  0.2743 + 1.4 

0 .278  r 

0 .276  a 

0 .277 r 

N i  a 0 .785 ~ 0 .7844  0.7637 0 .7768 0 .7737  - -  0 .4  

0.75 a 

0.77" 

P b  a 0 .086  r 0 .088  0 .074  0 ,082 0 .084 + 2 .4  

V a 0 .474  r 0 .4754 0.4647 0.475 0 .4747 - 0.1 

N b "  0 .376  r 0.3791 0 .3647  0.3761 0 .3747 - 0.4 

0.375 d 

0 .366  e 

Ta a 0.700 r 0.6931 0 .6795  0 .6904  0 .6895 - 0.1 
0.687 d 

M o  a 1.18 r 1.228 1.2141 1.2271 1.2241 - 0 .2  

1.158 d 

1.197 e 

W a 1 .52& 1.5217 1.5117 1.5217 1.5217 0 

1.514 ~ 

1.53 d 

1.485 ~ 

Pt"  0 .637 ~ 0 .6383 0 .6247 0 .6344  0.6347 + 0.1 

0 .622 e 

0 . 6 V  

M g O  b 1.306 ~ 1.3092 1.2924 1.3101 1.3024 - 0.6 

M g O  a 1.292 f 1.3017 1.2852 1.3029 1.2952 - 0.6 

C a F z  b 0.409 ~ 0 .4256 0.4119 0.4252 0.4219 - 0.8 

C a F z  ~ 0.411 f 0 .4123 0 .3996 0 .4118 0 .4096 - 0.5 

[~-ZnS b 0 .317 ~ 0.3311 0.3148 0.3263 0.3248 0.5 

[3-ZnS ~ 0.318 f 0 .3158 0.2979 0 .3094 0 .3076 - 0.6 

Z n S e  a'b 0 .289 ~ 0 .2977 0.2799 0.2925 0.2899 - 0.9 

0.285 f 

C d T e  a'~' 0.138 ~ 0.1428 0.138 0 .1404 0.1401 - 0.1 

0.139 f 

Average = 0 
( +  0.01) 

a Data used by Ledbetter and Naimon I-3]. 

b Data used by Middya et al. [2] .  

c See [2 ] .  

d See  [16] .  

e See [17] .  

f See [3] .  

g Diff .  = 100 (present value - H i l l ' s  value)/(Hill's value). 

Table II lists the values of Young's modulus cal- 
culated from Equation 10 using the current averaging 
scheme, and the methods of Middya et al. and Hill. 
The table also lists the experimental values of Young's 
modulus from the equation 

E = 9BG/(3B + G) (l l) 

where the values of G and B represent the experi- 
mental values listed in Tables I and III, respectively. 
When there is more than one value listed for G or B, 
the arithmetic mean value is used. 

Close examination of the results in Table II shows 
that the agreement between the experimental values of 
Young's modulus, E, and the current calculated 
values, is excellent. Because the same longitudinal 
velocity is used to calculate E and B, the apparent 
discrepancy may not be attributed to the method of 
computing VL, nor to the underlying assumption of 
the existence of quasi-longitudinal waves which travel 
with their own velocity. Assuming there is agreement 
with this notion, then the source of the discrepancy for 
the calculated values of bulk modulus in Table III 
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T A B L E I I C o m p a r i s o n  of the exper imenta l  and  ca lcula ted  values for Young 's  modu lus  for some cubic materials .  Young 's  modulus ,  E, is 

ca lcula ted  f iom E = 9BG/(3B + G) 

Mater ia l  E (101 a Pa)  D i f f e r e n c e  ~ 

(%) 
Exper imen ta l  M i d d y a  et al. Hill  Present  

E21 E63 

Cu a 1.2668 1.3047 1.2521 1.2665 + 1.2 

Cu u 1.3084 1.2501 1.2639 + 1.1 
Ag b 0.7959 0.8336 0.8054 0.8125 + 0.9 

Ag a 0.7989 0.7744 0.7805 + 0.8 
Au "'b 0.7924 0.8034 0.7714 0.7827 + 1.5 

NP  2.0699 2.0704 2.0433 2.0468 + 0.2 

Pb" 0.2422 0.2466 0.2312 0.2372 + 2.6 

V ~ 1.2956 1.2948 t .2934 1.2931 0 

Fe a 2.1269 2.1099 2.0704 2.0769 + 0.3 

Nb  ~ 1.0507 1.0605 1.0514 1.0491 - 0.2 

Ta a 1.8844 1.8623 1.8536 1.8540 0 

M@ 3.1011 3.2006 3.1942 3.1924 -- 0.1 

W a 3.9062 3.9028 3.9029 3.9029 0 
Pt" 1.7585 1.7817 1.7707 1.7724 + 0.1 

M g O  b 3.0904 3.1184 3.0980 3.1080 + 0.3 

M g O  ~ 3.0734 3.0527 3.0639 + 0.4 
CaF2 b 1.0779 1.0977 1.0919 1.0901 - 0.2 

CaE2 a 1.0761 1.0719 1.0704 -- 0.1 
ZnSe a, b 0.7434 0.7735 0.7526 0.7570 + 0.6 

C d T &  b 0.3747 0.3865 0.3784 0.3799 + 0.4 

Average - + 0.5 

~.b See Table  I. 

Difference = 100 (present  value - Hill 's  value)/(HilI 's  value). 

T A B L E  I I I  C o m p a r i s o n  of the exper imenta l  and  calcula ted values for bulk  modu lus  for some cubic materials .  For  the sources of the 
exper imenta l  values,  E2] 

Mater ia l  B (10  ~ Pa) Difference c 
(%) 

Exper imen ta l  M i d d y a  et al. Hill  Present  

[2] [6] 

Cu" 1.376 1.4667 1.370 1.4583 + 6.5 
1.3974 

Ag ~ 1.027 1.0438 1.0027 1.0523 + 5.0 

Au ab 1.766 1.7715 1.735 1.7808 + 2.6 

Ni  a 1.90 1.914 1.8467 1.9254 + 4.3 

Pb a 0.438 0.447 0.4274 0.4516 + 5.7 

V a 1.537 1.5601 1.5857 1.5909 + 0.3 
Fe a 1.795 1.8807 1.7833 1.8969 + 6.4 

Nb  a 1.736 1.7444 1.7183 1.7494 + 1.8 

Ta a 2.04 1.9824 1.9610 1.9863 + 1.3 

Mo  a 2.779 2.7105 2.6827 2.7144 + 1.2 

W ~ 3.055 2.9895 2.9895 2.9895 0 
2.963 

3.296 

Pt ~ 2.838 2.8459 2.8270 2.8501 + 0.8 
M g O  ~ 1.641 1.5037 1.549 1.6097 + 3.9 

1.663 

CaF2  ~ 0.999 0.9198 0.90 0.9224 + 2.5 

0.438 0.447 0.4274 0.4516 + 5.7 
]3-ZnS" 0.775 0.7302 0.6927 0.7364 + 6.3 

0.766 

ZnSe a 0.598 0.6475 0.5953 0.6557 

CdTe" 0.424 0.4985 0.4238 0.4429 
+ 10.2 

+ 4 . 5  

Average = + 3.8 

~.b See footnotes  b and  c in Table  I. 

~ Difference = 100 (present value Hill 's  value)/(Hill 's  value). 

must come from error propagation in Equation 9. We 
can demonstrate this by rearranging Equation 11 for 
B in terms of E and G 

B = E G / [ 3 ( 3 G  - -  E)] (12) 

and pursuing an example. The current calculated 
values of G and E for copper are 46.59 and 
126.68 GPa, respectively. Insertion of these values in 
Equation 12 yields a value of 150.29 GPa for B. Sup- 
pose that we allow a + 1% error in computing G. The 
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value of G would then be 47.05 GPa  and the resulting 
value for B would be 137.13 GPa. Such a value agrees 
quite well with the experimental value and also with 
that predicted by the Voigt method and, consequently, 
by the Hill method. With this value of G and the 
original value for B in Equation 11, on the other hand, 
the resulting value for E would be 125.55 GPa. This 
value differs from the current calculated value by less 
than 1%. The foregoing suggest that the nature of the 
equations employed to calculate B leads to error 
propagation. 

The trend in Table III is that the current averaging 
scheme always yields values for B that are higher than 
the experimental values. It is suggested, therefore, that 
B could be computed from Equation 12 after E and 
G are computed from their respective velocities with 
G increased by 1%. Of course, such calculation is not 
without its dangers. Therefore, B is best calculated 
as an invariant scalar either by the Voigt or Reuss 
method. 

Third, the agreement between the experimental 
values and the calculated current values of G and 
E (Tables I and II) is excellent and by far better than 
that of Middya et al. For some of the materials 
marked by the letter a, the averaging scheme of 
Middya et al. appears to yield calculated values that 
agree better with the experimental values than with 
those of the present scheme. This is a misleading 
appearance because some of the elastic moduli listed 
by them seem to be questionable. For example, of all 
the data listed by Simmons and Wang 1-10] for silver, 
they chose the set of data that differs greatly from the 
rest of the data listed. When the elastic moduli for 
silver listed by Ledbetter and Naimon (also from Sim- 
mons and Wang) are used, the resulting calculated 
values for E and G for silver are about 2.5% and 3%, 
respectively, higher than those predicted by the cur- 
rent method. These values do not compare well with 
the experimental data: the values of E and G are about 
4.7% and 4.8% higher than the arithmetic average of 
the experimental values. This trend exists throughout 
Tables II and III. Thus, the method of Middya et al. 

suffers in two main ways: (1) from disagreement of 
their results with those of the present averaging 
scheme and the experimental data, and (2) their 
method uses the average of the reciprocal phase velo- 
cities while the technical constants are actually pro- 
portional to the squared velocities. 

Fourth, the agreement in results for G and E of the 
present averaging scheme and the geometric mean 
values of Hill is rather remarkable, despite the fact 
that the starting premises of the two schemes are 
entirely different. The maximum disagreement be- 
tween the two approaches is less than 1.5%, excluding 
the results for lead, where the disagreement is about 
2.5%. It must be emphasized, however, that the pre- 
sent method predicts values for G and E that agree 
better with experimental observations than those of 
the Hill method. 

The results of this research show that averaging 
methods derived from sound velocity measurements 
follow the scheme of the averaging methods based on 
static deformation of materials. That is, averaging the 
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Figure 1 Values of the ratio shear modulus (theory) to shear 
modulus (observed) as a function of the Zener elastic anisotropy 
factor A ( = 2C44/(C11 - -  C12)) for some cubic materials. (O) [4], 
(A) [5], (x) (2), (*) [3], (+) [6], (�9 present work, ( ) ideal 
value. 

reciprocal velocity tends to yield results representing 
an upper bound for the technical constants similar to 
that of Voigt's classical work. Averaging the cubed 
reciprocal velocity, on the other hand, tends to yield 
results representing a lower bound for the technical 
constants similar to that of Reuss' classical work. 
However, the results of the upper and lower bounds 
predicted from sound velocity measurements are 
closer to observations than those of Voigt and Reuss. 

As expected, this work has shown that averaging 
the squared reciprocal velocity on which the technical 
constants actually depend appears to be superior to 
previous averaging schemes, not only in terms of 
agreement with observation, but also in terms of sim- 
plicity. Moreover, the current averaging scheme is 
self-consistent because it applies to all crystal symmet- 
ries. This finding is depicted in Fig. 1 where the ratio 
of G (theoretical) to G(observed) is plotted versus the 
Zener anisotropy factor A ( = 2 C 4 4 / ( C a l  - C l z ) .  As 
can be seen in the figure, the present method yields 
ratios falling between those of Middya et al. and 
Ledbetter and Naimon, and closer to observation 
than either of theirs. The concordance between the 
present method and Hill's is also illustrated in the 
figure. 

3 . 2 .  T e c h n i c a l  c o n s t a n t s  f o r  s o m e  

n o n - c u b i c  m a t e r i a l s  

The results for the calculation of the shear modulus 
G are presented in Table IV. The table lists the experi- 
mental values of G (column 2), the computed values 
using Hill's method (column 3), the computed values 
using the new averaging scheme (column 4), and the 
percentage deviation (column 5) between the present 



TAB L E I V Comparison of the values of shear modulus obtained by Hill's method and by the present method with experimental data for 
some hexagonal, trigonal, tetragonal and orthorhombic materials 

Material G (101~ Pa) Difference" Reference 
(%) 

Experimental Hill Present 
[6] 

Cd 0.241 0.2392 0.2308 - 3.5 [17] 
Co 0.764 0.8233 0.8172 0.7 [17] 

0.750 0.570 0.5735 + 0.6 [16] 
Mg 0.1736 0.1721 0.1720 -0 .1  [17] 

0.174 0.1737 0.1736 - 0.1 [16] 
Zn 0.372 0.3893 0.3805 - 2.3 [16] 
Zr 0.341 0.3602 0.3594 - 0.2 [16] 
Hf 0.53 0.5581 0.5577 -0 .1  [17] 
Ti 0.3934 0.4335 0.4328 - 0,2 [17] 
Sb 0.2 0.2264 0.2194 - 3 . 1  [17] 

0.2698 0.2524 - 6.5 
Bi 0.1285 0.1173 0.1158 - 1.3 [17] 

0.1290 0.1249 0.1209 - 3 . 2  [16] 
Se 0.217 0.1086 0.0947 - 14.7 [16] 

0.0659 0.0584 - 12.8 
Te 0,154 0.1444 0.1293 - 11.7 [16] 
In 0.0373 0.469 0.480 + 2.4 [17] 
Sn 0.204 0.2287 0.2281 - 0 . 3  [17] 

0.1844 0.1775 0.1831 + 3.2 [16] 
~-U 0.7044 0.7921 0.7814 - 1.4 [17] 

0.7360 [16] 
Ga 0.43 0.3684 0.3666 - 0.5 [17] 

0.346 [16] 
Average: - 2.7 

" Difference (%) = 100 (present value - Hill's value)/(Hill's value). 

TAB L E V Comparison of the values of Young's modulus obtained by Hill's 'method and by the present method with experimental data for 
some hexagonal, trigonal, tetragonal and orthorhombic materials 

Material E (1011 Pa) Difference" Reference 
(%) 

Experimental Hill Present 
[6] 

Cd 0.623 0.6244 0,6141 - 1.6 [17] 
0.5528 0.5693 0,5588 - 1 . 8  [19] 

Co 2.001 2.1586 2.1503 - 0 . 4  [16] 
2.073 1.5597 1,5583 - 0 . 1  [19] 

Mg 0.444 0.4445 0,4445 0 [16] 
0.435 0.4465 0,4465 0 [19]- 

Zn 0.9259 1.0758 1.0927 + 1.6 [19] 
0.922 0.9746 0.9825 + 0.8 [17] 

Zr 0.9467 0.9598 0.9587 - 0.1 [19] 
0.9560 [16] 

Hf 1.370 1.4294 1.4292 0 [17] 
1.382 [19] 

Ti 1.161 1.1461 1.1457 0 [19] 
1.06 [17] 

Sb 0.5494 0.5660 0.5645 - 0.3 [17] 
0.780 0.6661 0.6624 - 0.6 [19] 

Bi 0.318 0.3165 0.3141 - 0 . 8  [19] 
0.340 0.333 0.3276 - 1.6 [16] 

Se 0.580 0.2618 0.2548 - 2.7 [16] 
0.1688 0.1639 - 3.0 

Te 0.412 0.3601 0.3508 - 2 . 7  [16] 
In 0.1105 0.1356 0.1388 + 2.4 [19] 

0.105 [16] 
Sn 0.55 0.5976 0.5974 0 [17] 

0.4146 0.4804 0.4968 + 3.4 [19] 
~ - U  1.766 1.9217 1.9259 + 0.2 [17] 

1,864 [16] 
Ga 1.20 0.9108 0.911 0 [17] 

0.965 [16] 
Average: - 0.3 

Difference (%) = 100 (present value - Hill's value)/(Hill's value). 
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results and those of Hill. Similar information is listed 
in Tables V and VI for Young's modulus, E, and the 
bulk modulus, B, respectively. An examination of 
these tables reveals that the concordance of the values 
of shear modulus and Young's modulus between the 
present scheme and that of Hill's is rather good. The 
average deviations for the values of G and E are 
- 2 . 7 %  and -0 .3%,  respectively. Complete com- 

parison between the experimental values and the com- 
puted values for either averaging scheme seems to be 
unobtainable because of the discrepancies among the 
experimental values. Broadly speaking, the agreement 
between the calculated values and the experimental 
values is satisfactory. The fact that the calculated 
values are in agreement with observation for most of 
the materials considered suggests that the apparent 
discrepancies between theory and observation may be 
due to metallurgical effects (mainly texture) in poly- 
crystalline materials and/or experimental error in 
measuring the elastic constants. As was the case for 
cubic symmetry, the present averaging scheme yields 
theoretical values for the bulk modulus, B, that are 
higher than the observed values (by 34.9% on the 
grand average) as well as higher than the theoretical 
values of Hill (by 13.5% on the grand average), and his 

method yields theoretical results in better agreement 
with observations than the present method. 

Again, it may be argued that some of the discrep- 
ancy between the present theoretical and observed 
values of B may be an artefact and is largely due to 
error propagation because of the nature of the equa- 
tion used to compute B. This is especially true in the 
cases of antimony, selenium and tellurium. For these 
materials, the stiffnesses producing the large percent- 
age deviations appear to be questionable because the 
margins of difference between Hill's theoretical values 
and the observed values are objectionably large in 
comparison with the results of the other data sets for 
these materials and for the other materials considered 
here. Additionally, the discrepancy between the theor- 
etical values of B and the experimental values may 
reflect the experimental difficulties connected with 
measuring the bulk modulus. For example, the experi- 
mental value of B quoted for selenium dates back to 
1915. While the age of a datum does not per se permit 
questions of precision of measurement, the following 
quotients of the Young's modulus, E, shear modulus, 
G, and bulk modulus, B, for selenium, tellurium 
and antimony do cast some doubt on the reliability 
of the experimental value of B for selenium: 

T A B L E V I Comparison of the results of bulk modulus obtained by Hill's method and by the present method with experimental data for 
some hexagonal, trigonal, tetragonal and orthorhombic materials 

Material B (1011 Pa) Difference 1" Difference 2 b Reference 
(%) (%) 

Experimental Hill Present 
[6] 

Cd 0.468 0.5278 0.5948 + 12.7 + 27.1 [16] 
0.476 0.5261 0.6447 + 22.5 + 35.3 [17] 

Co 1.920 1.9033 1.9435 + 2.1 + 1.2 [17] 
1.915 1.8278 1.8365 + 0.5 - 4.1 [16] 

Mg 0.289 0.3555 0.3566 + 0.3 + 23.4 [17] 
0.354 0.3460 0.3471 + 0.3 - 1.9 [16] 

Zn 0.599 0.7561 0.8831 + 16.8 + 47.4 [16] 
0.605 0.6547 0.7840 + 19.7 + 29.6 [17] 

Zr 0.833 0.953 0,96 + 017 + 15.2 [16] 
0.898 [17] 

Hf 1.09 1.0865 1.0892 + 0.3 - 0.1 [16] 
1.098 [17] 

Ti 1.052 1.0727 1.0831 + 1.0 + 3.0 [16] 
1.236 [17] 

Sb 0.3924 0.3781 0.4405 + 16.5 + 12.3 [17] 
0.3828 0.4204 0.5868 + 39.6 + 53.3 [16] 

Bi 0.315 0.3483 0.3655 + 4.9 + 16.0 [16] 
0.353 0.3361 0.3759 + 11,8 + 6.5 [17] 

Se 0.091 0.1496 0.2744 + 45.5 + 201.5 [16] 
0.1332 0.2819 + 52.7 + 209.8 

Te 0.230 0.2407 0.4068 + 40.8 + 76.9 [16] 
In 0.410 0.4159 0.4314 + 3.7 + 5.2 [16] 

0.436 [17] 
Sn 0.51 0.5145 0.5237 + 1.8 + 2.7 [17] 

0.542 0.5494 0.5790 + 5.4 + 6.8 [16] 
e-U 1.02 1.1166 1.1993 + 7.4 + 17.6 [17] 

0.988 [16] 
Ga 0.5 0.5744 0.5897 + 2.7 17.9 [17] 

0.569 [16] 
Average: + 13.5 Average: + 34,9 
Average excl. Se Average excl. Se 
and Te: + 8.5 and Te: 15.7 

a Difference 1 (%) = 100 (present value Hill's value)/(Hill's value). 
b Difference 2 (%) = 100 (present value -- experimental value)/(experimental value). 
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E(Se)/E(Te) = 1.41, G(Se)/G(Te)= 1.41, B(Se)/B(Te) 
= 0.4 (low?); E(Sb)/E(Te)= 1.3 or 1.9, G(Sb)/G(Te) 
= 1.3, B(Sb)/B(Te)= 1.7. Interestingly, the elements 

selenium and tellurium lie in column 6A of the peri- 
odic table and are considered as metalloids. Hence, at 
the bottom of Table VI we have presented average 
values with and without the data for selenium and 
tellurium. Thus, excluding the data for selenium and 
tellurium, the average difference between the values of 
B predicted by the present scheme and the experi- 
mental value is 15.7%, while the average difference 
between the values predicted by our scheme and by 
Hill's is 8.5%. Nevertheless, one should be discour- 
aged from using the present averaging scheme to com- 
pute B. It appears that it is best to use the Voigt 
averaging method for B. 

4. C o n c l u s i o n  
The new averaging scheme [1], involving the aver- 
aging of the squared reciprocal sound velocities com- 
puted from input values of Ci~, has been used to 
calculate the technical constants G, E and B for several 
materials of cubic and non-cubic (hexagonal, tetra- 
gonal, trigonal and orthorhombic) symmetry. The 
results have been compared with those from the 
averaging scheme of Hill [6]. For the calculated 
values of G and E, agreement between the two 
schemes was within 2.7% and 0.5%, respectively. 
However, the values computed by the new scheme 
tended to overestimate the values of bulk modulus 
computed by Hill's scheme by 13.5% on average. This 
study has confirmed that the new averaging scheme 
is an efficient computational method for calculating 
the technical constants of both cubic and non-cubic 
materials from input of Ci~ data. 

Dr J. D. Whittenberger (Program Manager) for stimu- 
lating discussions. 
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